Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath.
نویسندگان
چکیده
In many realizations of electron spin qubits the dominant source of decoherence is the fluctuating nuclear spin bath of the host material. The slowness of this bath lends itself to a promising mitigation strategy where the nuclear spin bath is prepared in a narrowed state with suppressed fluctuations. Here, this approach is realized for a two-electron spin qubit in a GaAs double quantum dot and a nearly tenfold increase in the inhomogeneous dephasing time T₂* is demonstrated. Between subsequent measurements, the bath is prepared by using the qubit as a feedback loop that first measures its nuclear environment by coherent precession, and then polarizes it depending on the final state. This procedure results in a stable fixed point at a nonzero polarization gradient between the two dots, which enables fast universal qubit control.
منابع مشابه
Thermal effect and role of entanglement and coherence on excitation transfer in a spin chain
We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...
متن کاملThermal negativity in a two qubit XXX and XX spin chain model in an external magnetic field
In this paper we studied the thermal negativity in a two-qubit XX spin ½ chain model and XXX spin1/2 chain model(isotropic Heisenberg model)spin-1/2 chain subjected to an external magnetic field inz direction. We calculate analytical relation for the thermal negativity for two qubit XX and XXX spinchain models in the external magnetic field. Effects of the magnetic field and temperature on then...
متن کاملSuppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostru...
متن کاملSuppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems.
Multi-qubit systems are crucial for the advancement and application of quantum science. Such systems require maintaining long coherence times while increasing the number of qubits available for coherent manipulation. For solid-state spin systems, qubit coherence is closely related to fundamental questions of many-body spin dynamics...
متن کاملEffects of Nuclear Spins on the Coherent Evolution of a Phase Qubit. Typeset Using Revt E X
The role of nuclear spins in decoherence and dephasing of a solid state phase qubit is investigated. Both effects of static spin environment and spin polarization fluctuations in time are considered on the basis of non-Markovian Langevin-Bloch equations. We find conditions when coupling of a phase qubit to a bath of nuclear spins does not impair coherent evolution of the qubit.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 105 21 شماره
صفحات -
تاریخ انتشار 2010